| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albid | Unicode version | ||
| Description: Formula-building rule for universal quantifier (deduction rule). (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| albid.1 |
|
| albid.2 |
|
| Ref | Expression |
|---|---|
| albid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 |
. . 3
| |
| 2 | 1 | nfri 1452 |
. 2
|
| 3 | albid.2 |
. 2
| |
| 4 | 2, 3 | albidh 1409 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: alexdc 1550 19.32dc 1609 eubid 1948 ralbida 2362 raleqf 2545 intab 3665 bdsepnft 10678 strcollnft 10779 sscoll2 10783 |
| Copyright terms: Public domain | W3C validator |