![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > albid | Unicode version |
Description: Formula-building rule for universal quantifier (deduction rule). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 |
![]() ![]() ![]() ![]() |
albid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
albid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nfri 1452 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | albid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | albidh 1409 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 |
This theorem depends on definitions: df-bi 115 df-nf 1390 |
This theorem is referenced by: alexdc 1550 19.32dc 1609 eubid 1948 ralbida 2362 raleqf 2545 intab 3665 bdsepnft 10678 strcollnft 10779 sscoll2 10783 |
Copyright terms: Public domain | W3C validator |