ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trin Unicode version

Theorem trin 3885
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
trin  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )

Proof of Theorem trin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3155 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
2 trss 3884 . . . . . 6  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
3 trss 3884 . . . . . 6  |-  ( Tr  B  ->  ( x  e.  B  ->  x  C_  B ) )
42, 3im2anan9 562 . . . . 5  |-  ( ( Tr  A  /\  Tr  B )  ->  (
( x  e.  A  /\  x  e.  B
)  ->  ( x  C_  A  /\  x  C_  B ) ) )
51, 4syl5bi 150 . . . 4  |-  ( ( Tr  A  /\  Tr  B )  ->  (
x  e.  ( A  i^i  B )  -> 
( x  C_  A  /\  x  C_  B ) ) )
6 ssin 3188 . . . 4  |-  ( ( x  C_  A  /\  x  C_  B )  <->  x  C_  ( A  i^i  B ) )
75, 6syl6ib 159 . . 3  |-  ( ( Tr  A  /\  Tr  B )  ->  (
x  e.  ( A  i^i  B )  ->  x  C_  ( A  i^i  B ) ) )
87ralrimiv 2433 . 2  |-  ( ( Tr  A  /\  Tr  B )  ->  A. x  e.  ( A  i^i  B
) x  C_  ( A  i^i  B ) )
9 dftr3 3879 . 2  |-  ( Tr  ( A  i^i  B
)  <->  A. x  e.  ( A  i^i  B ) x  C_  ( A  i^i  B ) )
108, 9sylibr 132 1  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1433   A.wral 2348    i^i cin 2972    C_ wss 2973   Tr wtr 3875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-in 2979  df-ss 2986  df-uni 3602  df-tr 3876
This theorem is referenced by:  ordin  4140
  Copyright terms: Public domain W3C validator