ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin Unicode version

Theorem elin 3155
Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
elin  |-  ( A  e.  ( B  i^i  C )  <->  ( A  e.  B  /\  A  e.  C ) )

Proof of Theorem elin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2610 . 2  |-  ( A  e.  ( B  i^i  C )  ->  A  e.  _V )
2 elex 2610 . . 3  |-  ( A  e.  C  ->  A  e.  _V )
32adantl 271 . 2  |-  ( ( A  e.  B  /\  A  e.  C )  ->  A  e.  _V )
4 eleq1 2141 . . . 4  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
5 eleq1 2141 . . . 4  |-  ( x  =  A  ->  (
x  e.  C  <->  A  e.  C ) )
64, 5anbi12d 456 . . 3  |-  ( x  =  A  ->  (
( x  e.  B  /\  x  e.  C
)  <->  ( A  e.  B  /\  A  e.  C ) ) )
7 df-in 2979 . . 3  |-  ( B  i^i  C )  =  { x  |  ( x  e.  B  /\  x  e.  C ) }
86, 7elab2g 2740 . 2  |-  ( A  e.  _V  ->  ( A  e.  ( B  i^i  C )  <->  ( A  e.  B  /\  A  e.  C ) ) )
91, 3, 8pm5.21nii 652 1  |-  ( A  e.  ( B  i^i  C )  <->  ( A  e.  B  /\  A  e.  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601    i^i cin 2972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979
This theorem is referenced by:  elin2  3156  elin3  3157  incom  3158  ineqri  3159  ineq1  3160  inass  3176  inss1  3186  ssin  3188  ssrin  3191  inssdif  3200  difin  3201  unssin  3203  inssun  3204  invdif  3206  indif  3207  indi  3211  undi  3212  difundi  3216  difindiss  3218  indifdir  3220  difin2  3226  inrab2  3237  inelcm  3304  inssdif0im  3311  uniin  3621  intun  3667  intpr  3668  elrint  3676  iunin2  3741  iinin2m  3746  elriin  3748  brin  3832  trin  3885  inex1  3912  inuni  3930  bnd2  3947  ordpwsucss  4310  ordpwsucexmid  4313  peano5  4339  inopab  4486  inxp  4488  dmin  4561  opelres  4635  intasym  4729  asymref  4730  dminss  4758  imainss  4759  inimasn  4761  ssrnres  4783  cnvresima  4830  dfco2a  4841  imainlem  5000  imain  5001  2elresin  5030  nfvres  5227  respreima  5316  isoini  5477  offval  5739  tfrlem5  5953  fnfi  6388  peano5nnnn  7058  peano5nni  8042  ixxdisj  8926  icodisj  9014  fzdisj  9071  uzdisj  9110  nn0disj  9148  fzouzdisj  9189  bdinex1  10690  bj-indind  10727
  Copyright terms: Public domain W3C validator