![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elin | Unicode version |
Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
elin |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2610 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elex 2610 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | adantl 271 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | eleq1 2141 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | eleq1 2141 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | anbi12d 456 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | df-in 2979 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | elab2g 2740 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 3, 8 | pm5.21nii 652 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 |
This theorem is referenced by: elin2 3156 elin3 3157 incom 3158 ineqri 3159 ineq1 3160 inass 3176 inss1 3186 ssin 3188 ssrin 3191 inssdif 3200 difin 3201 unssin 3203 inssun 3204 invdif 3206 indif 3207 indi 3211 undi 3212 difundi 3216 difindiss 3218 indifdir 3220 difin2 3226 inrab2 3237 inelcm 3304 inssdif0im 3311 uniin 3621 intun 3667 intpr 3668 elrint 3676 iunin2 3741 iinin2m 3746 elriin 3748 brin 3832 trin 3885 inex1 3912 inuni 3930 bnd2 3947 ordpwsucss 4310 ordpwsucexmid 4313 peano5 4339 inopab 4486 inxp 4488 dmin 4561 opelres 4635 intasym 4729 asymref 4730 dminss 4758 imainss 4759 inimasn 4761 ssrnres 4783 cnvresima 4830 dfco2a 4841 imainlem 5000 imain 5001 2elresin 5030 nfvres 5227 respreima 5316 isoini 5477 offval 5739 tfrlem5 5953 fnfi 6388 peano5nnnn 7058 peano5nni 8042 ixxdisj 8926 icodisj 9014 fzdisj 9071 uzdisj 9110 nn0disj 9148 fzouzdisj 9189 bdinex1 10690 bj-indind 10727 |
Copyright terms: Public domain | W3C validator |