ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  triun Unicode version

Theorem triun 3888
Description: The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
triun  |-  ( A. x  e.  A  Tr  B  ->  Tr  U_ x  e.  A  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem triun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eliun 3682 . . . 4  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
2 r19.29 2494 . . . . 5  |-  ( ( A. x  e.  A  Tr  B  /\  E. x  e.  A  y  e.  B )  ->  E. x  e.  A  ( Tr  B  /\  y  e.  B
) )
3 nfcv 2219 . . . . . . 7  |-  F/_ x
y
4 nfiu1 3708 . . . . . . 7  |-  F/_ x U_ x  e.  A  B
53, 4nfss 2992 . . . . . 6  |-  F/ x  y  C_  U_ x  e.  A  B
6 trss 3884 . . . . . . . 8  |-  ( Tr  B  ->  ( y  e.  B  ->  y  C_  B ) )
76imp 122 . . . . . . 7  |-  ( ( Tr  B  /\  y  e.  B )  ->  y  C_  B )
8 ssiun2 3721 . . . . . . . 8  |-  ( x  e.  A  ->  B  C_ 
U_ x  e.  A  B )
9 sstr2 3006 . . . . . . . 8  |-  ( y 
C_  B  ->  ( B  C_  U_ x  e.  A  B  ->  y  C_ 
U_ x  e.  A  B ) )
108, 9syl5com 29 . . . . . . 7  |-  ( x  e.  A  ->  (
y  C_  B  ->  y 
C_  U_ x  e.  A  B ) )
117, 10syl5 32 . . . . . 6  |-  ( x  e.  A  ->  (
( Tr  B  /\  y  e.  B )  ->  y  C_  U_ x  e.  A  B ) )
125, 11rexlimi 2470 . . . . 5  |-  ( E. x  e.  A  ( Tr  B  /\  y  e.  B )  ->  y  C_ 
U_ x  e.  A  B )
132, 12syl 14 . . . 4  |-  ( ( A. x  e.  A  Tr  B  /\  E. x  e.  A  y  e.  B )  ->  y  C_ 
U_ x  e.  A  B )
141, 13sylan2b 281 . . 3  |-  ( ( A. x  e.  A  Tr  B  /\  y  e.  U_ x  e.  A  B )  ->  y  C_ 
U_ x  e.  A  B )
1514ralrimiva 2434 . 2  |-  ( A. x  e.  A  Tr  B  ->  A. y  e.  U_  x  e.  A  B
y  C_  U_ x  e.  A  B )
16 dftr3 3879 . 2  |-  ( Tr 
U_ x  e.  A  B 
<-> 
A. y  e.  U_  x  e.  A  B
y  C_  U_ x  e.  A  B )
1715, 16sylibr 132 1  |-  ( A. x  e.  A  Tr  B  ->  Tr  U_ x  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1433   A.wral 2348   E.wrex 2349    C_ wss 2973   U_ciun 3678   Tr wtr 3875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-in 2979  df-ss 2986  df-uni 3602  df-iun 3680  df-tr 3876
This theorem is referenced by:  truni  3889
  Copyright terms: Public domain W3C validator