ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  triun GIF version

Theorem triun 3888
Description: The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
triun (∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem triun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 3682 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
2 r19.29 2494 . . . . 5 ((∀𝑥𝐴 Tr 𝐵 ∧ ∃𝑥𝐴 𝑦𝐵) → ∃𝑥𝐴 (Tr 𝐵𝑦𝐵))
3 nfcv 2219 . . . . . . 7 𝑥𝑦
4 nfiu1 3708 . . . . . . 7 𝑥 𝑥𝐴 𝐵
53, 4nfss 2992 . . . . . 6 𝑥 𝑦 𝑥𝐴 𝐵
6 trss 3884 . . . . . . . 8 (Tr 𝐵 → (𝑦𝐵𝑦𝐵))
76imp 122 . . . . . . 7 ((Tr 𝐵𝑦𝐵) → 𝑦𝐵)
8 ssiun2 3721 . . . . . . . 8 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
9 sstr2 3006 . . . . . . . 8 (𝑦𝐵 → (𝐵 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵))
108, 9syl5com 29 . . . . . . 7 (𝑥𝐴 → (𝑦𝐵𝑦 𝑥𝐴 𝐵))
117, 10syl5 32 . . . . . 6 (𝑥𝐴 → ((Tr 𝐵𝑦𝐵) → 𝑦 𝑥𝐴 𝐵))
125, 11rexlimi 2470 . . . . 5 (∃𝑥𝐴 (Tr 𝐵𝑦𝐵) → 𝑦 𝑥𝐴 𝐵)
132, 12syl 14 . . . 4 ((∀𝑥𝐴 Tr 𝐵 ∧ ∃𝑥𝐴 𝑦𝐵) → 𝑦 𝑥𝐴 𝐵)
141, 13sylan2b 281 . . 3 ((∀𝑥𝐴 Tr 𝐵𝑦 𝑥𝐴 𝐵) → 𝑦 𝑥𝐴 𝐵)
1514ralrimiva 2434 . 2 (∀𝑥𝐴 Tr 𝐵 → ∀𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵)
16 dftr3 3879 . 2 (Tr 𝑥𝐴 𝐵 ↔ ∀𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵)
1715, 16sylibr 132 1 (∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1433  wral 2348  wrex 2349  wss 2973   ciun 3678  Tr wtr 3875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-in 2979  df-ss 2986  df-uni 3602  df-iun 3680  df-tr 3876
This theorem is referenced by:  truni  3889
  Copyright terms: Public domain W3C validator