ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un12 Unicode version

Theorem un12 3130
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un12  |-  ( A  u.  ( B  u.  C ) )  =  ( B  u.  ( A  u.  C )
)

Proof of Theorem un12
StepHypRef Expression
1 uncom 3116 . . 3  |-  ( A  u.  B )  =  ( B  u.  A
)
21uneq1i 3122 . 2  |-  ( ( A  u.  B )  u.  C )  =  ( ( B  u.  A )  u.  C
)
3 unass 3129 . 2  |-  ( ( A  u.  B )  u.  C )  =  ( A  u.  ( B  u.  C )
)
4 unass 3129 . 2  |-  ( ( B  u.  A )  u.  C )  =  ( B  u.  ( A  u.  C )
)
52, 3, 43eqtr3i 2109 1  |-  ( A  u.  ( B  u.  C ) )  =  ( B  u.  ( A  u.  C )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1284    u. cun 2971
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977
This theorem is referenced by:  un23  3131  un4  3132
  Copyright terms: Public domain W3C validator