HomeHome Intuitionistic Logic Explorer
Theorem List (p. 32 of 108)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3101-3200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdifss2d 3101 If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 3100. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  ( B  \  C ) )   =>    |-  ( ph  ->  A  C_  B )
 
Theoremssdifss 3102 Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
 |-  ( A  C_  B  ->  ( A  \  C )  C_  B )
 
Theoremddifnel 3103* Double complement under universal class. The hypothesis corresponds to stability of membership in 
A, which is weaker than decidability (see dcimpstab 785). Actually, the conclusion is a characterization of stability of membership in a class (see ddifstab 3104) . Exercise 4.10(s) of [Mendelson] p. 231, but with an additional hypothesis. For a version without a hypothesis, but which only states that  A is a subset of  _V  \  ( _V  \  A ), see ddifss 3202. (Contributed by Jim Kingdon, 21-Jul-2018.)
 |-  ( -.  x  e.  ( _V  \  A )  ->  x  e.  A )   =>    |-  ( _V  \  ( _V  \  A ) )  =  A
 
Theoremddifstab 3104* A class is equal to its double complement if and only if it is stable (that is, membership in it is a stable property). (Contributed by BJ, 12-Dec-2021.)
 |-  ( ( _V  \  ( _V  \  A ) )  =  A  <->  A. xSTAB  x  e.  A )
 
Theoremssconb 3105 Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.)
 |-  ( ( A  C_  C  /\  B  C_  C )  ->  ( A  C_  ( C  \  B )  <->  B  C_  ( C  \  A ) ) )
 
Theoremsscon 3106 Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.)
 |-  ( A  C_  B  ->  ( C  \  B )  C_  ( C  \  A ) )
 
Theoremssdif 3107 Difference law for subsets. (Contributed by NM, 28-May-1998.)
 |-  ( A  C_  B  ->  ( A  \  C )  C_  ( B  \  C ) )
 
Theoremssdifd 3108 If  A is contained in  B, then  ( A 
\  C ) is contained in  ( B  \  C ). Deduction form of ssdif 3107. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( A  \  C )  C_  ( B  \  C ) )
 
Theoremsscond 3109 If  A is contained in  B, then  ( C 
\  B ) is contained in  ( C  \  A ). Deduction form of sscon 3106. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( C  \  B )  C_  ( C  \  A ) )
 
Theoremssdifssd 3110 If  A is contained in  B, then  ( A 
\  C ) is also contained in  B. Deduction form of ssdifss 3102. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( A  \  C )  C_  B )
 
Theoremssdif2d 3111 If  A is contained in  B and  C is contained in  D, then  ( A  \  D ) is contained in  ( B  \  C ). Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  C 
 C_  D )   =>    |-  ( ph  ->  ( A  \  D ) 
 C_  ( B  \  C ) )
 
Theoremraldifb 3112 Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
 |-  ( A. x  e.  A  ( x  e/  B  ->  ph )  <->  A. x  e.  ( A  \  B ) ph )
 
2.1.13.2  The union of two classes
 
Theoremelun 3113 Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.)
 |-  ( A  e.  ( B  u.  C )  <->  ( A  e.  B  \/  A  e.  C ) )
 
Theoremuneqri 3114* Inference from membership to union. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( x  e.  A  \/  x  e.  B )  <->  x  e.  C )   =>    |-  ( A  u.  B )  =  C
 
Theoremunidm 3115 Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  u.  A )  =  A
 
Theoremuncom 3116 Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  u.  B )  =  ( B  u.  A )
 
Theoremequncom 3117 If a class equals the union of two other classes, then it equals the union of those two classes commuted. (Contributed by Alan Sare, 18-Feb-2012.)
 |-  ( A  =  ( B  u.  C )  <->  A  =  ( C  u.  B ) )
 
Theoremequncomi 3118 Inference form of equncom 3117. (Contributed by Alan Sare, 18-Feb-2012.)
 |-  A  =  ( B  u.  C )   =>    |-  A  =  ( C  u.  B )
 
Theoremuneq1 3119 Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
 
Theoremuneq2 3120 Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
 
Theoremuneq12 3121 Equality theorem for union of two classes. (Contributed by NM, 29-Mar-1998.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  u.  C )  =  ( B  u.  D ) )
 
Theoremuneq1i 3122 Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.)
 |-  A  =  B   =>    |-  ( A  u.  C )  =  ( B  u.  C )
 
Theoremuneq2i 3123 Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.)
 |-  A  =  B   =>    |-  ( C  u.  A )  =  ( C  u.  B )
 
Theoremuneq12i 3124 Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  u.  C )  =  ( B  u.  D )
 
Theoremuneq1d 3125 Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  u.  C )  =  ( B  u.  C ) )
 
Theoremuneq2d 3126 Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  u.  A )  =  ( C  u.  B ) )
 
Theoremuneq12d 3127 Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  u.  C )  =  ( B  u.  D ) )
 
Theoremnfun 3128 Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  u.  B )
 
Theoremunass 3129 Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  u.  B )  u.  C )  =  ( A  u.  ( B  u.  C ) )
 
Theoremun12 3130 A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
 |-  ( A  u.  ( B  u.  C ) )  =  ( B  u.  ( A  u.  C ) )
 
Theoremun23 3131 A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  u.  B )  u.  C )  =  ( ( A  u.  C )  u.  B )
 
Theoremun4 3132 A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
 |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( ( A  u.  C )  u.  ( B  u.  D ) )
 
Theoremunundi 3133 Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
 |-  ( A  u.  ( B  u.  C ) )  =  ( ( A  u.  B )  u.  ( A  u.  C ) )
 
Theoremunundir 3134 Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
 |-  ( ( A  u.  B )  u.  C )  =  ( ( A  u.  C )  u.  ( B  u.  C ) )
 
Theoremssun1 3135 Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
 |-  A  C_  ( A  u.  B )
 
Theoremssun2 3136 Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
 |-  A  C_  ( B  u.  A )
 
Theoremssun3 3137 Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  C_  B  ->  A  C_  ( B  u.  C ) )
 
Theoremssun4 3138 Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.)
 |-  ( A  C_  B  ->  A  C_  ( C  u.  B ) )
 
Theoremelun1 3139 Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  e.  B  ->  A  e.  ( B  u.  C ) )
 
Theoremelun2 3140 Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
 |-  ( A  e.  B  ->  A  e.  ( C  u.  B ) )
 
Theoremunss1 3141 Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  B  ->  ( A  u.  C )  C_  ( B  u.  C ) )
 
Theoremssequn1 3142 A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  B  <->  ( A  u.  B )  =  B )
 
Theoremunss2 3143 Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
 |-  ( A  C_  B  ->  ( C  u.  A )  C_  ( C  u.  B ) )
 
Theoremunss12 3144 Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.)
 |-  ( ( A  C_  B  /\  C  C_  D )  ->  ( A  u.  C )  C_  ( B  u.  D ) )
 
Theoremssequn2 3145 A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
 |-  ( A  C_  B  <->  ( B  u.  A )  =  B )
 
Theoremunss 3146 The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.)
 |-  ( ( A  C_  C  /\  B  C_  C ) 
 <->  ( A  u.  B )  C_  C )
 
Theoremunssi 3147 An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  A  C_  C   &    |-  B  C_  C   =>    |-  ( A  u.  B )  C_  C
 
Theoremunssd 3148 A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  ->  A  C_  C )   &    |-  ( ph  ->  B 
 C_  C )   =>    |-  ( ph  ->  ( A  u.  B ) 
 C_  C )
 
Theoremunssad 3149 If  ( A  u.  B ) is contained in  C, so is  A. One-way deduction form of unss 3146. Partial converse of unssd 3148. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  ( A  u.  B )  C_  C )   =>    |-  ( ph  ->  A  C_  C )
 
Theoremunssbd 3150 If  ( A  u.  B ) is contained in  C, so is  B. One-way deduction form of unss 3146. Partial converse of unssd 3148. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  ( A  u.  B )  C_  C )   =>    |-  ( ph  ->  B  C_  C )
 
Theoremssun 3151 A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
 |-  ( ( A  C_  B  \/  A  C_  C )  ->  A  C_  ( B  u.  C ) )
 
Theoremrexun 3152 Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
 |-  ( E. x  e.  ( A  u.  B ) ph  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )
 
Theoremralunb 3153 Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( A. x  e.  ( A  u.  B ) ph  <->  ( A. x  e.  A  ph  /\  A. x  e.  B  ph ) )
 
Theoremralun 3154 Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( A. x  e.  A  ph  /\  A. x  e.  B  ph )  ->  A. x  e.  ( A  u.  B ) ph )
 
2.1.13.3  The intersection of two classes
 
Theoremelin 3155 Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  e.  ( B  i^i  C )  <->  ( A  e.  B  /\  A  e.  C ) )
 
Theoremelin2 3156 Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
 |-  X  =  ( B  i^i  C )   =>    |-  ( A  e.  X 
 <->  ( A  e.  B  /\  A  e.  C ) )
 
Theoremelin3 3157 Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
 |-  X  =  ( ( B  i^i  C )  i^i  D )   =>    |-  ( A  e.  X 
 <->  ( A  e.  B  /\  A  e.  C  /\  A  e.  D )
 )
 
Theoremincom 3158 Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  i^i  B )  =  ( B  i^i  A )
 
Theoremineqri 3159* Inference from membership to intersection. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  C )   =>    |-  ( A  i^i  B )  =  C
 
Theoremineq1 3160 Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.)
 |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C ) )
 
Theoremineq2 3161 Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
 |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B ) )
 
Theoremineq12 3162 Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  i^i  C )  =  ( B  i^i  D ) )
 
Theoremineq1i 3163 Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
 |-  A  =  B   =>    |-  ( A  i^i  C )  =  ( B  i^i  C )
 
Theoremineq2i 3164 Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
 |-  A  =  B   =>    |-  ( C  i^i  A )  =  ( C  i^i  B )
 
Theoremineq12i 3165 Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  i^i  C )  =  ( B  i^i  D )
 
Theoremineq1d 3166 Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  i^i  C )  =  ( B  i^i  C ) )
 
Theoremineq2d 3167 Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  i^i  A )  =  ( C  i^i  B ) )
 
Theoremineq12d 3168 Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  i^i  C )  =  ( B  i^i  D ) )
 
Theoremineqan12d 3169 Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( A  i^i  C )  =  ( B  i^i  D ) )
 
Theoremdfss1 3170 A frequently-used variant of subclass definition df-ss 2986. (Contributed by NM, 10-Jan-2015.)
 |-  ( A  C_  B  <->  ( B  i^i  A )  =  A )
 
Theoremdfss5 3171 Another definition of subclasshood. Similar to df-ss 2986, dfss 2987, and dfss1 3170. (Contributed by David Moews, 1-May-2017.)
 |-  ( A  C_  B  <->  A  =  ( B  i^i  A ) )
 
Theoremnfin 3172 Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  i^i  B )
 
Theoremcsbing 3173 Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.)
 |-  ( A  e.  B  -> 
 [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )
 
Theoremrabbi2dva 3174* Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( x  e.  B  <->  ps ) )   =>    |-  ( ph  ->  ( A  i^i  B )  =  { x  e.  A  |  ps }
 )
 
Theoreminidm 3175 Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  i^i  A )  =  A
 
Theoreminass 3176 Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( A  i^i  ( B  i^i  C ) )
 
Theoremin12 3177 A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.)
 |-  ( A  i^i  ( B  i^i  C ) )  =  ( B  i^i  ( A  i^i  C ) )
 
Theoremin32 3178 A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i 
 B )
 
Theoremin13 3179 A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
 |-  ( A  i^i  ( B  i^i  C ) )  =  ( C  i^i  ( B  i^i  A ) )
 
Theoremin31 3180 A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  B )  i^i 
 A )
 
Theoreminrot 3181 Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  A )  i^i 
 B )
 
Theoremin4 3182 Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.)
 |-  ( ( A  i^i  B )  i^i  ( C  i^i  D ) )  =  ( ( A  i^i  C )  i^i  ( B  i^i  D ) )
 
Theoreminindi 3183 Intersection distributes over itself. (Contributed by NM, 6-May-1994.)
 |-  ( A  i^i  ( B  i^i  C ) )  =  ( ( A  i^i  B )  i^i  ( A  i^i  C ) )
 
Theoreminindir 3184 Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i  ( B  i^i  C ) )
 
Theoremsseqin2 3185 A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.)
 |-  ( A  C_  B  <->  ( B  i^i  A )  =  A )
 
Theoreminss1 3186 The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
 |-  ( A  i^i  B )  C_  A
 
Theoreminss2 3187 The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
 |-  ( A  i^i  B )  C_  B
 
Theoremssin 3188 Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  C_  B  /\  A  C_  C ) 
 <->  A  C_  ( B  i^i  C ) )
 
Theoremssini 3189 An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
 |-  A  C_  B   &    |-  A  C_  C   =>    |-  A  C_  ( B  i^i  C )
 
Theoremssind 3190 A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  A 
 C_  C )   =>    |-  ( ph  ->  A 
 C_  ( B  i^i  C ) )
 
Theoremssrin 3191 Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )
 
Theoremsslin 3192 Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.)
 |-  ( A  C_  B  ->  ( C  i^i  A )  C_  ( C  i^i  B ) )
 
Theoremss2in 3193 Intersection of subclasses. (Contributed by NM, 5-May-2000.)
 |-  ( ( A  C_  B  /\  C  C_  D )  ->  ( A  i^i  C )  C_  ( B  i^i  D ) )
 
Theoremssinss1 3194 Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.)
 |-  ( A  C_  C  ->  ( A  i^i  B )  C_  C )
 
Theoreminss 3195 Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.)
 |-  ( ( A  C_  C  \/  B  C_  C )  ->  ( A  i^i  B )  C_  C )
 
2.1.13.4  Combinations of difference, union, and intersection of two classes
 
Theoremunabs 3196 Absorption law for union. (Contributed by NM, 16-Apr-2006.)
 |-  ( A  u.  ( A  i^i  B ) )  =  A
 
Theoreminabs 3197 Absorption law for intersection. (Contributed by NM, 16-Apr-2006.)
 |-  ( A  i^i  ( A  u.  B ) )  =  A
 
Theoremssddif 3198 Double complement and subset. Similar to ddifss 3202 but inside a class  B instead of the universal class  _V. In classical logic the subset operation on the right hand side could be an equality (that is,  A  C_  B  <->  ( B  \  ( B 
\  A ) )  =  A). (Contributed by Jim Kingdon, 24-Jul-2018.)
 |-  ( A  C_  B  <->  A 
 C_  ( B  \  ( B  \  A ) ) )
 
Theoremunssdif 3199 Union of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.)
 |-  ( A  u.  B )  C_  ( _V  \  (
 ( _V  \  A )  \  B ) )
 
Theoreminssdif 3200 Intersection of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.)
 |-  ( A  i^i  B )  C_  ( A  \  ( _V  \  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >