| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneqdifeqim | Unicode version | ||
| Description: Two ways that |
| Ref | Expression |
|---|---|
| uneqdifeqim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3116 |
. . . 4
| |
| 2 | eqtr 2098 |
. . . . . 6
| |
| 3 | 2 | eqcomd 2086 |
. . . . 5
|
| 4 | difeq1 3083 |
. . . . . 6
| |
| 5 | difun2 3322 |
. . . . . 6
| |
| 6 | eqtr 2098 |
. . . . . . 7
| |
| 7 | incom 3158 |
. . . . . . . . . 10
| |
| 8 | 7 | eqeq1i 2088 |
. . . . . . . . 9
|
| 9 | disj3 3296 |
. . . . . . . . 9
| |
| 10 | 8, 9 | bitri 182 |
. . . . . . . 8
|
| 11 | eqtr 2098 |
. . . . . . . . . 10
| |
| 12 | 11 | expcom 114 |
. . . . . . . . 9
|
| 13 | 12 | eqcoms 2084 |
. . . . . . . 8
|
| 14 | 10, 13 | sylbi 119 |
. . . . . . 7
|
| 15 | 6, 14 | syl5com 29 |
. . . . . 6
|
| 16 | 4, 5, 15 | sylancl 404 |
. . . . 5
|
| 17 | 3, 16 | syl 14 |
. . . 4
|
| 18 | 1, 17 | mpan 414 |
. . 3
|
| 19 | 18 | com12 30 |
. 2
|
| 20 | 19 | adantl 271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |