![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeq1i | Unicode version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqeq1 2087 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 |
This theorem is referenced by: ssequn2 3145 dfss1 3170 disj 3292 disjr 3293 undisj1 3301 undisj2 3302 uneqdifeqim 3328 reusn 3463 rabsneu 3465 eusn 3466 iin0r 3943 opeqsn 4007 unisuc 4168 onsucelsucexmid 4273 sucprcreg 4292 onintexmid 4315 dmopab3 4566 dm0rn0 4570 ssdmres 4651 imadisj 4707 args 4714 intirr 4731 dminxp 4785 dfrel3 4798 fntpg 4975 fncnv 4985 dff1o4 5154 dffv4g 5195 fvun2 5261 fnreseql 5298 riota1 5506 riota2df 5508 fnotovb 5568 ovid 5637 ov 5640 ovg 5659 f1od2 5876 frec0g 6006 diffitest 6371 prarloclem5 6690 renegcl 7369 elznn0 8366 maxclpr 10108 ex-ceil 10564 |
Copyright terms: Public domain | W3C validator |