ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0inp0 GIF version

Theorem 0inp0 3940
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.)
Assertion
Ref Expression
0inp0 (𝐴 = ∅ → ¬ 𝐴 = {∅})

Proof of Theorem 0inp0
StepHypRef Expression
1 0nep0 3939 . . 3 ∅ ≠ {∅}
2 neeq1 2258 . . 3 (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅}))
31, 2mpbiri 166 . 2 (𝐴 = ∅ → 𝐴 ≠ {∅})
43neneqd 2266 1 (𝐴 = ∅ → ¬ 𝐴 = {∅})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1284  wne 2245  c0 3251  {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-v 2603  df-dif 2975  df-nul 3252  df-sn 3404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator