| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq1 | GIF version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2087 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | notbid 624 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐶 ↔ ¬ 𝐵 = 𝐶)) |
| 3 | df-ne 2246 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶) | |
| 4 | df-ne 2246 | . 2 ⊢ (𝐵 ≠ 𝐶 ↔ ¬ 𝐵 = 𝐶) | |
| 5 | 2, 3, 4 | 3bitr4g 221 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 = wceq 1284 ≠ wne 2245 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-ne 2246 |
| This theorem is referenced by: neeq1i 2260 neeq1d 2263 nelrdva 2797 0inp0 3940 uzn0 8634 xrnemnf 8853 xrnepnf 8854 ngtmnft 8885 fztpval 9100 |
| Copyright terms: Public domain | W3C validator |