ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21 GIF version

Theorem 19.21 1515
Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑." (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.21.1 𝑥𝜑
Assertion
Ref Expression
19.21 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))

Proof of Theorem 19.21
StepHypRef Expression
1 19.21.1 . 2 𝑥𝜑
2 19.21t 1514 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
31, 2ax-mp 7 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282  wnf 1389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-4 1440  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by:  stdpc5  1516  19.21-2  1597  19.32dc  1609  cbv1  1672  eu2  1985  mo3h  1994  moanim  2015  r2alf  2383
  Copyright terms: Public domain W3C validator