| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r2alf | GIF version | ||
| Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| r2alf.1 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| r2alf | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2353 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) | |
| 2 | r2alf.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 3 | 2 | nfcri 2213 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 4 | 3 | 19.21 1515 | . . . 4 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) |
| 5 | impexp 259 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑))) | |
| 6 | 5 | albii 1399 | . . . 4 ⊢ (∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑))) |
| 7 | df-ral 2353 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝜑)) | |
| 8 | 7 | imbi2i 224 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) |
| 9 | 4, 6, 8 | 3bitr4i 210 | . . 3 ⊢ (∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) |
| 10 | 9 | albii 1399 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) |
| 11 | 1, 10 | bitr4i 185 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 ∈ wcel 1433 Ⅎwnfc 2206 ∀wral 2348 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 |
| This theorem is referenced by: r2al 2385 ralcomf 2515 |
| Copyright terms: Public domain | W3C validator |