ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2alf GIF version

Theorem r2alf 2383
Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
r2alf.1 𝑦𝐴
Assertion
Ref Expression
r2alf (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem r2alf
StepHypRef Expression
1 df-ral 2353 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝜑))
2 r2alf.1 . . . . . 6 𝑦𝐴
32nfcri 2213 . . . . 5 𝑦 𝑥𝐴
4319.21 1515 . . . 4 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
5 impexp 259 . . . . 5 (((𝑥𝐴𝑦𝐵) → 𝜑) ↔ (𝑥𝐴 → (𝑦𝐵𝜑)))
65albii 1399 . . . 4 (∀𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)))
7 df-ral 2353 . . . . 5 (∀𝑦𝐵 𝜑 ↔ ∀𝑦(𝑦𝐵𝜑))
87imbi2i 224 . . . 4 ((𝑥𝐴 → ∀𝑦𝐵 𝜑) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
94, 6, 83bitr4i 210 . . 3 (∀𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ (𝑥𝐴 → ∀𝑦𝐵 𝜑))
109albii 1399 . 2 (∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝜑))
111, 10bitr4i 185 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282  wcel 1433  wnfc 2206  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353
This theorem is referenced by:  r2al  2385  ralcomf  2515
  Copyright terms: Public domain W3C validator