![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.21t | GIF version |
Description: Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.) |
Ref | Expression |
---|---|
19.21t | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1390 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | 19.21ht 1513 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | |
3 | 1, 2 | sylbi 119 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 Ⅎwnf 1389 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-ial 1467 ax-i5r 1468 |
This theorem depends on definitions: df-bi 115 df-nf 1390 |
This theorem is referenced by: 19.21 1515 nfimd 1517 equs5or 1751 sbal1yz 1918 r19.21t 2436 ceqsalt 2625 sbciegft 2844 |
Copyright terms: Public domain | W3C validator |