| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.38 | GIF version | ||
| Description: Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.38 | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1424 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | hba1 1473 | . . 3 ⊢ (∀𝑥𝜓 → ∀𝑥∀𝑥𝜓) | |
| 3 | 1, 2 | hbim 1477 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) |
| 4 | 19.8a 1522 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 5 | ax-4 1440 | . . 3 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 6 | 4, 5 | imim12i 58 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → (𝜑 → 𝜓)) |
| 7 | 3, 6 | alrimih 1398 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: 19.23t 1607 sbi2v 1813 mo3h 1994 rgenm 3343 ralm 3345 |
| Copyright terms: Public domain | W3C validator |