![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralm | GIF version |
Description: Inhabited classes and restricted quantification. (Contributed by Jim Kingdon, 6-Aug-2018.) |
Ref | Expression |
---|---|
ralm | ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2353 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | 1 | imbi2i 224 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑))) |
3 | 19.38 1606 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑))) | |
4 | 2, 3 | sylbi 119 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑))) |
5 | pm2.43 52 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) → (𝑥 ∈ 𝐴 → 𝜑)) | |
6 | 5 | alimi 1384 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
7 | 4, 6 | syl 14 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
8 | 7, 1 | sylibr 132 | . 2 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥 ∈ 𝐴 𝜑) |
9 | ax-1 5 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) | |
10 | 8, 9 | impbii 124 | 1 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 ∃wex 1421 ∈ wcel 1433 ∀wral 2348 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 ax-i5r 1468 |
This theorem depends on definitions: df-bi 115 df-ral 2353 |
This theorem is referenced by: raaan 3347 |
Copyright terms: Public domain | W3C validator |