| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.9t | GIF version | ||
| Description: A closed version of 19.9 1575. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| 19.9t | ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1390 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | 19.9ht 1572 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → 𝜑)) | |
| 3 | 1, 2 | sylbi 119 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) |
| 4 | 19.8a 1522 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 5 | 3, 4 | impbid1 140 | 1 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 Ⅎwnf 1389 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: 19.9d 1591 19.23t 1607 spimt 1664 exdistrfor 1721 sbequi 1760 sbft 1769 vtoclegft 2670 copsexg 3999 |
| Copyright terms: Public domain | W3C validator |