| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spimt | GIF version | ||
| Description: Closed theorem form of spim 1666. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.) |
| Ref | Expression |
|---|---|
| spimt | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a9e 1626 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | exim 1530 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝜑 → 𝜓))) | |
| 3 | 1, 2 | mpi 15 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ∃𝑥(𝜑 → 𝜓)) |
| 4 | 19.35-1 1555 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
| 6 | 19.9t 1573 | . . 3 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 ↔ 𝜓)) | |
| 7 | 6 | biimpd 142 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 → 𝜓)) |
| 8 | 5, 7 | sylan9r 402 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 = wceq 1284 Ⅎwnf 1389 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: spimd 10576 |
| Copyright terms: Public domain | W3C validator |