ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimt GIF version

Theorem spimt 1664
Description: Closed theorem form of spim 1666. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.)
Assertion
Ref Expression
spimt ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))

Proof of Theorem spimt
StepHypRef Expression
1 a9e 1626 . . . 4 𝑥 𝑥 = 𝑦
2 exim 1530 . . . 4 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝜑𝜓)))
31, 2mpi 15 . . 3 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ∃𝑥(𝜑𝜓))
4 19.35-1 1555 . . 3 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
53, 4syl 14 . 2 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥𝜑 → ∃𝑥𝜓))
6 19.9t 1573 . . 3 (Ⅎ𝑥𝜓 → (∃𝑥𝜓𝜓))
76biimpd 142 . 2 (Ⅎ𝑥𝜓 → (∃𝑥𝜓𝜓))
85, 7sylan9r 402 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wnf 1389  wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-i9 1463  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by:  spimd  10576
  Copyright terms: Public domain W3C validator