ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exdistrfor GIF version

Theorem exdistrfor 1721
Description: Distribution of existential quantifiers, with a bound-variable hypothesis saying that 𝑦 is not free in 𝜑, but 𝑥 can be free in 𝜑 (and there is no distinct variable condition on 𝑥 and 𝑦). (Contributed by Jim Kingdon, 25-Feb-2018.)
Hypothesis
Ref Expression
exdistrfor.1 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦𝜑)
Assertion
Ref Expression
exdistrfor (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))

Proof of Theorem exdistrfor
StepHypRef Expression
1 exdistrfor.1 . 2 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦𝜑)
2 biidd 170 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜓)))
32drex1 1719 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝜑𝜓) ↔ ∃𝑦(𝜑𝜓)))
43drex2 1660 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑥(𝜑𝜓) ↔ ∃𝑥𝑦(𝜑𝜓)))
5 hbe1 1424 . . . . . 6 (∃𝑥(𝜑𝜓) → ∀𝑥𝑥(𝜑𝜓))
6519.9h 1574 . . . . 5 (∃𝑥𝑥(𝜑𝜓) ↔ ∃𝑥(𝜑𝜓))
7 19.8a 1522 . . . . . . 7 (𝜓 → ∃𝑦𝜓)
87anim2i 334 . . . . . 6 ((𝜑𝜓) → (𝜑 ∧ ∃𝑦𝜓))
98eximi 1531 . . . . 5 (∃𝑥(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
106, 9sylbi 119 . . . 4 (∃𝑥𝑥(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
114, 10syl6bir 162 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)))
12 ax-ial 1467 . . . 4 (∀𝑥𝑦𝜑 → ∀𝑥𝑥𝑦𝜑)
13 19.40 1562 . . . . . 6 (∃𝑦(𝜑𝜓) → (∃𝑦𝜑 ∧ ∃𝑦𝜓))
14 19.9t 1573 . . . . . . . 8 (Ⅎ𝑦𝜑 → (∃𝑦𝜑𝜑))
1514biimpd 142 . . . . . . 7 (Ⅎ𝑦𝜑 → (∃𝑦𝜑𝜑))
1615anim1d 329 . . . . . 6 (Ⅎ𝑦𝜑 → ((∃𝑦𝜑 ∧ ∃𝑦𝜓) → (𝜑 ∧ ∃𝑦𝜓)))
1713, 16syl5 32 . . . . 5 (Ⅎ𝑦𝜑 → (∃𝑦(𝜑𝜓) → (𝜑 ∧ ∃𝑦𝜓)))
1817sps 1470 . . . 4 (∀𝑥𝑦𝜑 → (∃𝑦(𝜑𝜓) → (𝜑 ∧ ∃𝑦𝜓)))
1912, 18eximdh 1542 . . 3 (∀𝑥𝑦𝜑 → (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)))
2011, 19jaoi 668 . 2 ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦𝜑) → (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)))
211, 20ax-mp 7 1 (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 661  wal 1282  wnf 1389  wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by:  oprabidlem  5556
  Copyright terms: Public domain W3C validator