![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3simpb | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancomb 927 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) | |
2 | 3simpa 935 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝜑 ∧ 𝜒)) | |
3 | 1, 2 | sylbi 119 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 919 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 921 |
This theorem is referenced by: 3adant2 957 3adantl2 1095 3adantr2 1098 enq0tr 6624 ixxssixx 8925 qbtwnzlemshrink 9258 rebtwn2zlemshrink 9262 muldvds1 10220 dvds2add 10229 dvds2sub 10230 dvdstr 10232 pw2dvdslemn 10543 |
Copyright terms: Public domain | W3C validator |