| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpb | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3simpb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancomb 927 |
. 2
| |
| 2 | 3simpa 935 |
. 2
| |
| 3 | 1, 2 | sylbi 119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: 3adant2 957 3adantl2 1095 3adantr2 1098 enq0tr 6624 ixxssixx 8925 qbtwnzlemshrink 9258 rebtwn2zlemshrink 9262 muldvds1 10220 dvds2add 10229 dvds2sub 10230 dvdstr 10232 pw2dvdslemn 10543 |
| Copyright terms: Public domain | W3C validator |