| Step | Hyp | Ref
| Expression |
| 1 | | simp2 939 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐽 ∈
(ℤ≥‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → 𝐽 ∈
(ℤ≥‘2)) |
| 2 | | 3simpb 936 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐽 ∈
(ℤ≥‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐽)))) |
| 3 | | 2z 8379 |
. . 3
⊢ 2 ∈
ℤ |
| 4 | | oveq2 5540 |
. . . . . . . 8
⊢ (𝑤 = 2 → (𝑚 + 𝑤) = (𝑚 + 2)) |
| 5 | 4 | breq2d 3797 |
. . . . . . 7
⊢ (𝑤 = 2 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 2))) |
| 6 | 5 | anbi2d 451 |
. . . . . 6
⊢ (𝑤 = 2 → ((𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 2)))) |
| 7 | 6 | rexbidv 2369 |
. . . . 5
⊢ (𝑤 = 2 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 2)))) |
| 8 | 7 | anbi2d 451 |
. . . 4
⊢ (𝑤 = 2 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 2))))) |
| 9 | 8 | imbi1d 229 |
. . 3
⊢ (𝑤 = 2 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 2))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))))) |
| 10 | | oveq2 5540 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → (𝑚 + 𝑤) = (𝑚 + 𝑘)) |
| 11 | 10 | breq2d 3797 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝑘))) |
| 12 | 11 | anbi2d 451 |
. . . . . 6
⊢ (𝑤 = 𝑘 → ((𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑘)))) |
| 13 | 12 | rexbidv 2369 |
. . . . 5
⊢ (𝑤 = 𝑘 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑘)))) |
| 14 | 13 | anbi2d 451 |
. . . 4
⊢ (𝑤 = 𝑘 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑘))))) |
| 15 | 14 | imbi1d 229 |
. . 3
⊢ (𝑤 = 𝑘 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))))) |
| 16 | | oveq2 5540 |
. . . . . . . 8
⊢ (𝑤 = (𝑘 + 1) → (𝑚 + 𝑤) = (𝑚 + (𝑘 + 1))) |
| 17 | 16 | breq2d 3797 |
. . . . . . 7
⊢ (𝑤 = (𝑘 + 1) → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + (𝑘 + 1)))) |
| 18 | 17 | anbi2d 451 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → ((𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1))))) |
| 19 | 18 | rexbidv 2369 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1))))) |
| 20 | 19 | anbi2d 451 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1)))))) |
| 21 | 20 | imbi1d 229 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))))) |
| 22 | | oveq2 5540 |
. . . . . . . 8
⊢ (𝑤 = 𝐽 → (𝑚 + 𝑤) = (𝑚 + 𝐽)) |
| 23 | 22 | breq2d 3797 |
. . . . . . 7
⊢ (𝑤 = 𝐽 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝐽))) |
| 24 | 23 | anbi2d 451 |
. . . . . 6
⊢ (𝑤 = 𝐽 → ((𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐽)))) |
| 25 | 24 | rexbidv 2369 |
. . . . 5
⊢ (𝑤 = 𝐽 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐽)))) |
| 26 | 25 | anbi2d 451 |
. . . 4
⊢ (𝑤 = 𝐽 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))))) |
| 27 | 26 | imbi1d 229 |
. . 3
⊢ (𝑤 = 𝐽 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))))) |
| 28 | | breq1 3788 |
. . . . . . 7
⊢ (𝑚 = 𝑥 → (𝑚 < 𝐴 ↔ 𝑥 < 𝐴)) |
| 29 | | oveq1 5539 |
. . . . . . . 8
⊢ (𝑚 = 𝑥 → (𝑚 + 2) = (𝑥 + 2)) |
| 30 | 29 | breq2d 3797 |
. . . . . . 7
⊢ (𝑚 = 𝑥 → (𝐴 < (𝑚 + 2) ↔ 𝐴 < (𝑥 + 2))) |
| 31 | 28, 30 | anbi12d 456 |
. . . . . 6
⊢ (𝑚 = 𝑥 → ((𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 2)) ↔ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2)))) |
| 32 | 31 | cbvrexv 2578 |
. . . . 5
⊢
(∃𝑚 ∈
ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 2)) ↔ ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) |
| 33 | 32 | biimpi 118 |
. . . 4
⊢
(∃𝑚 ∈
ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 2)) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) |
| 34 | 33 | adantl 271 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧
∃𝑚 ∈ ℤ
(𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 2))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) |
| 35 | | rebtwn2zlemstep 9261 |
. . . . . 6
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑘))) |
| 36 | 35 | 3expia 1140 |
. . . . 5
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℝ) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑘)))) |
| 37 | 36 | imdistanda 436 |
. . . 4
⊢ (𝑘 ∈
(ℤ≥‘2) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1)))) → (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑘))))) |
| 38 | 37 | imim1d 74 |
. . 3
⊢ (𝑘 ∈
(ℤ≥‘2) → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))))) |
| 39 | 3, 9, 15, 21, 27, 34, 38 | uzind4i 8680 |
. 2
⊢ (𝐽 ∈
(ℤ≥‘2) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2)))) |
| 40 | 1, 2, 39 | sylc 61 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐽 ∈
(ℤ≥‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) |