ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abvor0dc GIF version

Theorem abvor0dc 3269
Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
abvor0dc (DECID 𝜑 → ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
Distinct variable group:   𝜑,𝑥

Proof of Theorem abvor0dc
StepHypRef Expression
1 df-dc 776 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 id 19 . . . . 5 (𝜑𝜑)
3 vex 2604 . . . . . 6 𝑥 ∈ V
43a1i 9 . . . . 5 (𝜑𝑥 ∈ V)
52, 42thd 173 . . . 4 (𝜑 → (𝜑𝑥 ∈ V))
65abbi1dv 2198 . . 3 (𝜑 → {𝑥𝜑} = V)
7 id 19 . . . . 5 𝜑 → ¬ 𝜑)
8 noel 3255 . . . . . 6 ¬ 𝑥 ∈ ∅
98a1i 9 . . . . 5 𝜑 → ¬ 𝑥 ∈ ∅)
107, 92falsed 650 . . . 4 𝜑 → (𝜑𝑥 ∈ ∅))
1110abbi1dv 2198 . . 3 𝜑 → {𝑥𝜑} = ∅)
126, 11orim12i 708 . 2 ((𝜑 ∨ ¬ 𝜑) → ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
131, 12sylbi 119 1 (DECID 𝜑 → ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 661  DECID wdc 775   = wceq 1284  wcel 1433  {cab 2067  Vcvv 2601  c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-dc 776  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-nul 3252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator