| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abvor0dc | Unicode version | ||
| Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.) |
| Ref | Expression |
|---|---|
| abvor0dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 776 |
. 2
| |
| 2 | id 19 |
. . . . 5
| |
| 3 | vex 2604 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | 2, 4 | 2thd 173 |
. . . 4
|
| 6 | 5 | abbi1dv 2198 |
. . 3
|
| 7 | id 19 |
. . . . 5
| |
| 8 | noel 3255 |
. . . . . 6
| |
| 9 | 8 | a1i 9 |
. . . . 5
|
| 10 | 7, 9 | 2falsed 650 |
. . . 4
|
| 11 | 10 | abbi1dv 2198 |
. . 3
|
| 12 | 6, 11 | orim12i 708 |
. 2
|
| 13 | 1, 12 | sylbi 119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-nul 3252 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |