| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2falsed | GIF version | ||
| Description: Two falsehoods are equivalent (deduction rule). (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| 2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
| 2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| 2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | pm2.21d 581 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 4 | 3 | pm2.21d 581 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 127 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-ia3 106 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: pm5.21ni 651 bianfd 889 abvor0dc 3269 nn0eln0 4359 nntri3 6098 fin0 6369 xrlttri3 8872 nltpnft 8884 ngtmnft 8885 xrrebnd 8886 mod2eq1n2dvds 10279 m1exp1 10301 |
| Copyright terms: Public domain | W3C validator |