| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albidh | GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction rule). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| albidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidh | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albidh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidh.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | alrimih 1398 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 4 | albi 1397 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: nfbidf 1472 albid 1546 dral2 1659 ax11v2 1741 albidv 1745 equs5or 1751 sbal2 1939 eubidh 1947 |
| Copyright terms: Public domain | W3C validator |