| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbidf | GIF version | ||
| Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfbidf.1 | ⊢ Ⅎ𝑥𝜑 |
| nfbidf.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| nfbidf | ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbidf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1452 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | nfbidf.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | albidh 1409 | . . . 4 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| 5 | 3, 4 | imbi12d 232 | . . 3 ⊢ (𝜑 → ((𝜓 → ∀𝑥𝜓) ↔ (𝜒 → ∀𝑥𝜒))) |
| 6 | 2, 5 | albidh 1409 | . 2 ⊢ (𝜑 → (∀𝑥(𝜓 → ∀𝑥𝜓) ↔ ∀𝑥(𝜒 → ∀𝑥𝜒))) |
| 7 | df-nf 1390 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
| 8 | df-nf 1390 | . 2 ⊢ (Ⅎ𝑥𝜒 ↔ ∀𝑥(𝜒 → ∀𝑥𝜒)) | |
| 9 | 6, 7, 8 | 3bitr4g 221 | 1 ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: dvelimdf 1933 nfcjust 2207 nfceqdf 2218 |
| Copyright terms: Public domain | W3C validator |