ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  albidh Unicode version

Theorem albidh 1409
Description: Formula-building rule for universal quantifier (deduction rule). (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
albidh.1  |-  ( ph  ->  A. x ph )
albidh.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
albidh  |-  ( ph  ->  ( A. x ps  <->  A. x ch ) )

Proof of Theorem albidh
StepHypRef Expression
1 albidh.1 . . 3  |-  ( ph  ->  A. x ph )
2 albidh.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2alrimih 1398 . 2  |-  ( ph  ->  A. x ( ps  <->  ch ) )
4 albi 1397 . 2  |-  ( A. x ( ps  <->  ch )  ->  ( A. x ps  <->  A. x ch ) )
53, 4syl 14 1  |-  ( ph  ->  ( A. x ps  <->  A. x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  nfbidf  1472  albid  1546  dral2  1659  ax11v2  1741  albidv  1745  equs5or  1751  sbal2  1939  eubidh  1947
  Copyright terms: Public domain W3C validator