| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equs5e | GIF version | ||
| Description: A property related to substitution that unlike equs5 1750 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) (Revised by NM, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| equs5e | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1522 | . . . . 5 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 2 | hbe1 1424 | . . . . 5 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → ∀𝑦∃𝑦𝜑) |
| 4 | 3 | anim2i 334 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ ∀𝑦∃𝑦𝜑)) |
| 5 | 4 | eximi 1531 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦∃𝑦𝜑)) |
| 6 | equs5a 1715 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦∃𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | |
| 7 | 5, 6 | syl 14 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 = wceq 1284 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-11 1437 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: ax11e 1717 sb4e 1726 |
| Copyright terms: Public domain | W3C validator |