![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcuni | GIF version |
Description: The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.) |
Ref | Expression |
---|---|
bdcuni | ⊢ BOUNDED ∪ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bdel 10612 | . . . . 5 ⊢ BOUNDED 𝑦 ∈ 𝑧 | |
2 | 1 | ax-bdex 10610 | . . . 4 ⊢ BOUNDED ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 |
3 | 2 | bdcab 10640 | . . 3 ⊢ BOUNDED {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧} |
4 | df-rex 2354 | . . . . 5 ⊢ (∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ 𝑦 ∈ 𝑧)) | |
5 | exancom 1539 | . . . . 5 ⊢ (∃𝑧(𝑧 ∈ 𝑥 ∧ 𝑦 ∈ 𝑧) ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) | |
6 | 4, 5 | bitri 182 | . . . 4 ⊢ (∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) |
7 | 6 | abbii 2194 | . . 3 ⊢ {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧} = {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} |
8 | 3, 7 | bdceqi 10634 | . 2 ⊢ BOUNDED {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} |
9 | df-uni 3602 | . 2 ⊢ ∪ 𝑥 = {𝑦 ∣ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)} | |
10 | 8, 9 | bdceqir 10635 | 1 ⊢ BOUNDED ∪ 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ∃wex 1421 {cab 2067 ∃wrex 2349 ∪ cuni 3601 BOUNDED wbdc 10631 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-bd0 10604 ax-bdex 10610 ax-bdel 10612 ax-bdsb 10613 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-rex 2354 df-uni 3602 df-bdc 10632 |
This theorem is referenced by: bj-uniex2 10707 |
Copyright terms: Public domain | W3C validator |