Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdop GIF version

Theorem bdop 10666
Description: The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdop BOUNDED𝑥, 𝑦

Proof of Theorem bdop
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdvsn 10665 . . . 4 BOUNDED 𝑧 = {𝑥}
2 bdcpr 10662 . . . . . . 7 BOUNDED {𝑥, 𝑦}
32bdss 10655 . . . . . 6 BOUNDED 𝑧 ⊆ {𝑥, 𝑦}
4 ax-bdel 10612 . . . . . . . 8 BOUNDED 𝑥𝑧
5 ax-bdel 10612 . . . . . . . 8 BOUNDED 𝑦𝑧
64, 5ax-bdan 10606 . . . . . . 7 BOUNDED (𝑥𝑧𝑦𝑧)
7 vex 2604 . . . . . . . . . . 11 𝑥 ∈ V
87prid1 3498 . . . . . . . . . 10 𝑥 ∈ {𝑥, 𝑦}
9 ssel 2993 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥𝑧))
108, 9mpi 15 . . . . . . . . 9 ({𝑥, 𝑦} ⊆ 𝑧𝑥𝑧)
11 vex 2604 . . . . . . . . . . 11 𝑦 ∈ V
1211prid2 3499 . . . . . . . . . 10 𝑦 ∈ {𝑥, 𝑦}
13 ssel 2993 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦𝑧))
1412, 13mpi 15 . . . . . . . . 9 ({𝑥, 𝑦} ⊆ 𝑧𝑦𝑧)
1510, 14jca 300 . . . . . . . 8 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑥𝑧𝑦𝑧))
16 prssi 3543 . . . . . . . 8 ((𝑥𝑧𝑦𝑧) → {𝑥, 𝑦} ⊆ 𝑧)
1715, 16impbii 124 . . . . . . 7 ({𝑥, 𝑦} ⊆ 𝑧 ↔ (𝑥𝑧𝑦𝑧))
186, 17bd0r 10616 . . . . . 6 BOUNDED {𝑥, 𝑦} ⊆ 𝑧
193, 18ax-bdan 10606 . . . . 5 BOUNDED (𝑧 ⊆ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑧)
20 eqss 3014 . . . . 5 (𝑧 = {𝑥, 𝑦} ↔ (𝑧 ⊆ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑧))
2119, 20bd0r 10616 . . . 4 BOUNDED 𝑧 = {𝑥, 𝑦}
221, 21ax-bdor 10607 . . 3 BOUNDED (𝑧 = {𝑥} ∨ 𝑧 = {𝑥, 𝑦})
23 vex 2604 . . . 4 𝑧 ∈ V
2423, 7, 11elop 3986 . . 3 (𝑧 ∈ ⟨𝑥, 𝑦⟩ ↔ (𝑧 = {𝑥} ∨ 𝑧 = {𝑥, 𝑦}))
2522, 24bd0r 10616 . 2 BOUNDED 𝑧 ∈ ⟨𝑥, 𝑦
2625bdelir 10638 1 BOUNDED𝑥, 𝑦
Colors of variables: wff set class
Syntax hints:  wa 102  wo 661   = wceq 1284  wcel 1433  wss 2973  {csn 3398  {cpr 3399  cop 3401  BOUNDED wbdc 10631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-bd0 10604  ax-bdan 10606  ax-bdor 10607  ax-bdal 10609  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-bdc 10632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator