Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniex2 GIF version

Theorem bj-uniex2 10707
Description: uniex2 4191 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniex2 𝑦 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-uniex2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdcuni 10667 . . . 4 BOUNDED 𝑥
21bdeli 10637 . . 3 BOUNDED 𝑧 𝑥
3 zfun 4189 . . . 4 𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦)
4 eluni 3604 . . . . . . 7 (𝑧 𝑥 ↔ ∃𝑦(𝑧𝑦𝑦𝑥))
54imbi1i 236 . . . . . 6 ((𝑧 𝑥𝑧𝑦) ↔ (∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
65albii 1399 . . . . 5 (∀𝑧(𝑧 𝑥𝑧𝑦) ↔ ∀𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
76exbii 1536 . . . 4 (∃𝑦𝑧(𝑧 𝑥𝑧𝑦) ↔ ∃𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
83, 7mpbir 144 . . 3 𝑦𝑧(𝑧 𝑥𝑧𝑦)
92, 8bdbm1.3ii 10682 . 2 𝑦𝑧(𝑧𝑦𝑧 𝑥)
10 dfcleq 2075 . . 3 (𝑦 = 𝑥 ↔ ∀𝑧(𝑧𝑦𝑧 𝑥))
1110exbii 1536 . 2 (∃𝑦 𝑦 = 𝑥 ↔ ∃𝑦𝑧(𝑧𝑦𝑧 𝑥))
129, 11mpbir 144 1 𝑦 𝑦 = 𝑥
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282   = wceq 1284  wex 1421  wcel 1433   cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-un 4188  ax-bd0 10604  ax-bdex 10610  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-uni 3602  df-bdc 10632
This theorem is referenced by:  bj-uniex  10708
  Copyright terms: Public domain W3C validator