| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdvsn | GIF version | ||
| Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdvsn | ⊢ BOUNDED 𝑥 = {𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcsn 10661 | . . . 4 ⊢ BOUNDED {𝑦} | |
| 2 | 1 | bdss 10655 | . . 3 ⊢ BOUNDED 𝑥 ⊆ {𝑦} |
| 3 | bdcv 10639 | . . . 4 ⊢ BOUNDED 𝑥 | |
| 4 | 3 | bdsnss 10664 | . . 3 ⊢ BOUNDED {𝑦} ⊆ 𝑥 |
| 5 | 2, 4 | ax-bdan 10606 | . 2 ⊢ BOUNDED (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥) |
| 6 | eqss 3014 | . 2 ⊢ (𝑥 = {𝑦} ↔ (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥)) | |
| 7 | 5, 6 | bd0r 10616 | 1 ⊢ BOUNDED 𝑥 = {𝑦} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 = wceq 1284 ⊆ wss 2973 {csn 3398 BOUNDED wbd 10603 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-bd0 10604 ax-bdan 10606 ax-bdal 10609 ax-bdeq 10611 ax-bdel 10612 ax-bdsb 10613 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-in 2979 df-ss 2986 df-sn 3404 df-bdc 10632 |
| This theorem is referenced by: bdop 10666 |
| Copyright terms: Public domain | W3C validator |