| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2false | GIF version | ||
| Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| 2false.1 | ⊢ ¬ 𝜑 |
| 2false.2 | ⊢ ¬ 𝜓 |
| Ref | Expression |
|---|---|
| 2false | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2false.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | 1 | pm2.21i 607 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | 2false.2 | . . 3 ⊢ ¬ 𝜓 | |
| 4 | 3 | pm2.21i 607 | . 2 ⊢ (𝜓 → 𝜑) |
| 5 | 2, 4 | impbii 124 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-ia3 106 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: bianfi 888 bifal 1297 dfnul2 3253 dfnul3 3254 rab0 3273 iun0 3734 0iun 3735 0xp 4438 cnv0 4747 co02 4854 0er 6163 bdnth 10625 bdnthALT 10626 |
| Copyright terms: Public domain | W3C validator |