Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vprc GIF version

Theorem bj-vprc 10687
Description: vprc 3909 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vprc ¬ V ∈ V

Proof of Theorem bj-vprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-nalset 10686 . . 3 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 2604 . . . . . . 7 𝑦 ∈ V
32tbt 245 . . . . . 6 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1399 . . . . 5 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2075 . . . . 5 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 185 . . . 4 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1536 . . 3 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 627 . 2 ¬ ∃𝑥 𝑥 = V
9 isset 2605 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
108, 9mtbir 628 1 ¬ V ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 103  wal 1282   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-ext 2063  ax-bdn 10608  ax-bdel 10612  ax-bdsep 10675
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-v 2603
This theorem is referenced by:  bj-nvel  10688  bj-vnex  10689  bj-intexr  10699  bj-intnexr  10700
  Copyright terms: Public domain W3C validator