| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovord2 | GIF version | ||
| Description: Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| caovord.1 | ⊢ 𝐴 ∈ V |
| caovord.2 | ⊢ 𝐵 ∈ V |
| caovord.3 | ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
| caovord2.3 | ⊢ 𝐶 ∈ V |
| caovord2.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
| Ref | Expression |
|---|---|
| caovord2 | ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovord.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | caovord.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | caovord.3 | . . 3 ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
| 4 | 1, 2, 3 | caovord 5692 | . 2 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| 5 | caovord2.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 6 | caovord2.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 7 | 5, 1, 6 | caovcom 5678 | . . 3 ⊢ (𝐶𝐹𝐴) = (𝐴𝐹𝐶) |
| 8 | 5, 2, 6 | caovcom 5678 | . . 3 ⊢ (𝐶𝐹𝐵) = (𝐵𝐹𝐶) |
| 9 | 7, 8 | breq12i 3794 | . 2 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)) |
| 10 | 4, 9 | syl6bb 194 | 1 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ∈ wcel 1433 Vcvv 2601 class class class wbr 3785 (class class class)co 5532 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: caovord3 5694 |
| Copyright terms: Public domain | W3C validator |