![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-pr | GIF version |
Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3468. For a more traditional definition, but requiring a dummy variable, see dfpr2 3417. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-pr | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cpr 3399 | . 2 class {𝐴, 𝐵} |
4 | 1 | csn 3398 | . . 3 class {𝐴} |
5 | 2 | csn 3398 | . . 3 class {𝐵} |
6 | 4, 5 | cun 2971 | . 2 class ({𝐴} ∪ {𝐵}) |
7 | 3, 6 | wceq 1284 | 1 wff {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
Colors of variables: wff set class |
This definition is referenced by: dfsn2 3412 dfpr2 3417 ralprg 3443 rexprg 3444 disjpr2 3456 prcom 3468 preq1 3469 qdass 3489 qdassr 3490 tpidm12 3491 prprc1 3500 difprsn1 3525 diftpsn3 3527 snsspr1 3533 snsspr2 3534 prss 3541 prssg 3542 2ordpr 4267 xpsspw 4468 dmpropg 4813 rnpropg 4820 funprg 4969 funtp 4972 fntpg 4975 f1oprg 5188 fnimapr 5254 fpr 5366 fprg 5367 fmptpr 5376 fvpr1 5386 fvpr1g 5388 fvpr2g 5389 df2o3 6037 pr2nelem 6460 fzosplitprm1 9243 bdcpr 10662 |
Copyright terms: Public domain | W3C validator |