ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pr GIF version

Definition df-pr 3405
Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3468. For a more traditional definition, but requiring a dummy variable, see dfpr2 3417. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pr {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})

Detailed syntax breakdown of Definition df-pr
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cpr 3399 . 2 class {𝐴, 𝐵}
41csn 3398 . . 3 class {𝐴}
52csn 3398 . . 3 class {𝐵}
64, 5cun 2971 . 2 class ({𝐴} ∪ {𝐵})
73, 6wceq 1284 1 wff {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
Colors of variables: wff set class
This definition is referenced by:  dfsn2  3412  dfpr2  3417  ralprg  3443  rexprg  3444  disjpr2  3456  prcom  3468  preq1  3469  qdass  3489  qdassr  3490  tpidm12  3491  prprc1  3500  difprsn1  3525  diftpsn3  3527  snsspr1  3533  snsspr2  3534  prss  3541  prssg  3542  2ordpr  4267  xpsspw  4468  dmpropg  4813  rnpropg  4820  funprg  4969  funtp  4972  fntpg  4975  f1oprg  5188  fnimapr  5254  fpr  5366  fprg  5367  fmptpr  5376  fvpr1  5386  fvpr1g  5388  fvpr2g  5389  df2o3  6037  pr2nelem  6460  fzosplitprm1  9243  bdcpr  10662
  Copyright terms: Public domain W3C validator