![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvsbcv | GIF version |
Description: Change the bound variable of a class substitution using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
cbvsbcv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvsbcv | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1461 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1461 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvsbcv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvsbc 2842 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 [wsbc 2815 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-sbc 2816 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |