ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbciegft GIF version

Theorem sbciegft 2844
Description: Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 2845.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbciegft ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbciegft
StepHypRef Expression
1 sbc5 2838 . . 3 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
2 bi1 116 . . . . . . . 8 ((𝜑𝜓) → (𝜑𝜓))
32imim2i 12 . . . . . . 7 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜑𝜓)))
43impd 251 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → ((𝑥 = 𝐴𝜑) → 𝜓))
54alimi 1384 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥((𝑥 = 𝐴𝜑) → 𝜓))
6 19.23t 1607 . . . . . 6 (Ⅎ𝑥𝜓 → (∀𝑥((𝑥 = 𝐴𝜑) → 𝜓) ↔ (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓)))
76biimpa 290 . . . . 5 ((Ⅎ𝑥𝜓 ∧ ∀𝑥((𝑥 = 𝐴𝜑) → 𝜓)) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
85, 7sylan2 280 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
983adant1 956 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
101, 9syl5bi 150 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
11 bi2 128 . . . . . . . 8 ((𝜑𝜓) → (𝜓𝜑))
1211imim2i 12 . . . . . . 7 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜓𝜑)))
1312com23 77 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝜓 → (𝑥 = 𝐴𝜑)))
1413alimi 1384 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)))
15 19.21t 1514 . . . . . 6 (Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))))
1615biimpa 290 . . . . 5 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
1714, 16sylan2 280 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
18173adant1 956 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
19 sbc6g 2839 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
20193ad2ant1 959 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
2118, 20sylibrd 167 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓[𝐴 / 𝑥]𝜑))
2210, 21impbid 127 1 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wal 1282   = wceq 1284  wnf 1389  wex 1421  wcel 1433  [wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816
This theorem is referenced by:  sbciegf  2845  sbciedf  2849
  Copyright terms: Public domain W3C validator