| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsrexbv | GIF version | ||
| Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| ceqsrexv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsrexbv | ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.42v 2511 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑))) | |
| 2 | eleq1 2141 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 2 | adantr 270 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 4 | 3 | pm5.32ri 442 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) |
| 5 | 4 | bicomi 130 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) |
| 6 | 5 | baib 861 | . . 3 ⊢ (𝑥 ∈ 𝐵 → ((𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
| 7 | 6 | rexbiia 2381 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑)) |
| 8 | ceqsrexv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 9 | 8 | ceqsrexv 2725 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| 10 | 9 | pm5.32i 441 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 11 | 1, 7, 10 | 3bitr3i 208 | 1 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∃wrex 2349 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 |
| This theorem is referenced by: frecsuclem3 6013 |
| Copyright terms: Public domain | W3C validator |