| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cgsexg | GIF version | ||
| Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
| Ref | Expression |
|---|---|
| cgsexg.1 | ⊢ (𝑥 = 𝐴 → 𝜒) |
| cgsexg.2 | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cgsexg | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsexg.2 | . . . 4 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpa 290 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| 3 | 2 | exlimiv 1529 | . 2 ⊢ (∃𝑥(𝜒 ∧ 𝜑) → 𝜓) |
| 4 | elisset 2613 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 5 | cgsexg.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝜒) | |
| 6 | 5 | eximi 1531 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜒) |
| 7 | 4, 6 | syl 14 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥𝜒) |
| 8 | 1 | biimprcd 158 | . . . . 5 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| 9 | 8 | ancld 318 | . . . 4 ⊢ (𝜓 → (𝜒 → (𝜒 ∧ 𝜑))) |
| 10 | 9 | eximdv 1801 | . . 3 ⊢ (𝜓 → (∃𝑥𝜒 → ∃𝑥(𝜒 ∧ 𝜑))) |
| 11 | 7, 10 | syl5com 29 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥(𝜒 ∧ 𝜑))) |
| 12 | 3, 11 | impbid2 141 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∃wex 1421 ∈ wcel 1433 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |