ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  chvar GIF version

Theorem chvar 1680
Description: Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
chvar.1 𝑥𝜓
chvar.2 (𝑥 = 𝑦 → (𝜑𝜓))
chvar.3 𝜑
Assertion
Ref Expression
chvar 𝜓

Proof of Theorem chvar
StepHypRef Expression
1 chvar.1 . . 3 𝑥𝜓
2 chvar.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32biimpd 142 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
41, 3spim 1666 . 2 (∀𝑥𝜑𝜓)
5 chvar.3 . 2 𝜑
64, 5mpg 1380 1 𝜓
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wnf 1389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-i9 1463  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by:  csbhypf  2941  opelopabsb  4015  findes  4344  fvmptssdm  5276  dfoprab4f  5839  dom2lem  6275  uzind4s  8678
  Copyright terms: Public domain W3C validator