| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbhypf | GIF version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2648 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| csbhypf.1 | ⊢ Ⅎ𝑥𝐴 |
| csbhypf.2 | ⊢ Ⅎ𝑥𝐶 |
| csbhypf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbhypf | ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfeq2 2230 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
| 3 | nfcsb1v 2938 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 4 | csbhypf.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
| 5 | 3, 4 | nfeq 2226 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 = 𝐶 |
| 6 | 2, 5 | nfim 1504 | . 2 ⊢ Ⅎ𝑥(𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| 7 | eqeq1 2087 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 8 | csbeq1a 2916 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 9 | 8 | eqeq1d 2089 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵 = 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 = 𝐶)) |
| 10 | 7, 9 | imbi12d 232 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶))) |
| 11 | csbhypf.3 | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 12 | 6, 10, 11 | chvar 1680 | 1 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 Ⅎwnfc 2206 ⦋csb 2908 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-sbc 2816 df-csb 2909 |
| This theorem is referenced by: tfisi 4328 |
| Copyright terms: Public domain | W3C validator |