![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbopabg | GIF version |
Description: Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
csbopabg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 2911 | . . 3 ⊢ (𝑤 = 𝐴 → ⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑}) | |
2 | dfsbcq2 2818 | . . . 4 ⊢ (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | opabbidv 3844 | . . 3 ⊢ (𝑤 = 𝐴 → {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
4 | 1, 3 | eqeq12d 2095 | . 2 ⊢ (𝑤 = 𝐴 → (⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} ↔ ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑})) |
5 | vex 2604 | . . 3 ⊢ 𝑤 ∈ V | |
6 | nfs1v 1856 | . . . 4 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝜑 | |
7 | 6 | nfopab 3846 | . . 3 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} |
8 | sbequ12 1694 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) | |
9 | 8 | opabbidv 3844 | . . 3 ⊢ (𝑥 = 𝑤 → {〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑}) |
10 | 5, 7, 9 | csbief 2947 | . 2 ⊢ ⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} |
11 | 4, 10 | vtoclg 2658 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 [wsb 1685 [wsbc 2815 ⦋csb 2908 {copab 3838 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 df-csb 2909 df-opab 3840 |
This theorem is referenced by: csbcnvg 4537 |
Copyright terms: Public domain | W3C validator |