| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pclem6 | GIF version | ||
| Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof rewritten by Jim Kingdon, 4-May-2018.) |
| Ref | Expression |
|---|---|
| pclem6 | ⊢ ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi1 116 | . . . . 5 ⊢ ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → (𝜑 → (𝜓 ∧ ¬ 𝜑))) | |
| 2 | pm3.4 326 | . . . . . 6 ⊢ ((𝜓 ∧ ¬ 𝜑) → (𝜓 → ¬ 𝜑)) | |
| 3 | 2 | com12 30 | . . . . 5 ⊢ (𝜓 → ((𝜓 ∧ ¬ 𝜑) → ¬ 𝜑)) |
| 4 | 1, 3 | syl9r 72 | . . . 4 ⊢ (𝜓 → ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → (𝜑 → ¬ 𝜑))) |
| 5 | ax-ia3 106 | . . . . 5 ⊢ (𝜓 → (¬ 𝜑 → (𝜓 ∧ ¬ 𝜑))) | |
| 6 | bi2 128 | . . . . 5 ⊢ ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → ((𝜓 ∧ ¬ 𝜑) → 𝜑)) | |
| 7 | 5, 6 | syl9 71 | . . . 4 ⊢ (𝜓 → ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → (¬ 𝜑 → 𝜑))) |
| 8 | 4, 7 | impbidd 125 | . . 3 ⊢ (𝜓 → ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → (𝜑 ↔ ¬ 𝜑))) |
| 9 | pm5.19 654 | . . . 4 ⊢ ¬ (𝜑 ↔ ¬ 𝜑) | |
| 10 | 9 | pm2.21i 607 | . . 3 ⊢ ((𝜑 ↔ ¬ 𝜑) → ⊥) |
| 11 | 8, 10 | syl6com 35 | . 2 ⊢ ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → (𝜓 → ⊥)) |
| 12 | dfnot 1302 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
| 13 | 11, 12 | sylibr 132 | 1 ⊢ ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ⊥wfal 1289 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 |
| This theorem is referenced by: nalset 3908 pwnss 3933 bj-nalset 10686 |
| Copyright terms: Public domain | W3C validator |