| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfnul3 | GIF version | ||
| Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| dfnul3 | ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 1629 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
| 2 | 1 | notnoti 606 | . . . 4 ⊢ ¬ ¬ 𝑥 = 𝑥 |
| 3 | pm3.24 659 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | 2false 649 | . . 3 ⊢ (¬ 𝑥 = 𝑥 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 5 | 4 | abbii 2194 | . 2 ⊢ {𝑥 ∣ ¬ 𝑥 = 𝑥} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} |
| 6 | dfnul2 3253 | . 2 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
| 7 | df-rab 2357 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} | |
| 8 | 5, 6, 7 | 3eqtr4i 2111 | 1 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 102 = wceq 1284 ∈ wcel 1433 {cab 2067 {crab 2352 ∅c0 3251 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-v 2603 df-dif 2975 df-nul 3252 |
| This theorem is referenced by: difidALT 3313 |
| Copyright terms: Public domain | W3C validator |