ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul3 Unicode version

Theorem dfnul3 3254
Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfnul3  |-  (/)  =  {
x  e.  A  |  -.  x  e.  A }

Proof of Theorem dfnul3
StepHypRef Expression
1 equid 1629 . . . . 5  |-  x  =  x
21notnoti 606 . . . 4  |-  -.  -.  x  =  x
3 pm3.24 659 . . . 4  |-  -.  (
x  e.  A  /\  -.  x  e.  A
)
42, 32false 649 . . 3  |-  ( -.  x  =  x  <->  ( x  e.  A  /\  -.  x  e.  A ) )
54abbii 2194 . 2  |-  { x  |  -.  x  =  x }  =  { x  |  ( x  e.  A  /\  -.  x  e.  A ) }
6 dfnul2 3253 . 2  |-  (/)  =  {
x  |  -.  x  =  x }
7 df-rab 2357 . 2  |-  { x  e.  A  |  -.  x  e.  A }  =  { x  |  ( x  e.  A  /\  -.  x  e.  A
) }
85, 6, 73eqtr4i 2111 1  |-  (/)  =  {
x  e.  A  |  -.  x  e.  A }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102    = wceq 1284    e. wcel 1433   {cab 2067   {crab 2352   (/)c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rab 2357  df-v 2603  df-dif 2975  df-nul 3252
This theorem is referenced by:  difidALT  3313
  Copyright terms: Public domain W3C validator