![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfss | GIF version |
Description: Variant of subclass definition df-ss 2986. (Contributed by NM, 3-Sep-2004.) |
Ref | Expression |
---|---|
dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 2986 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | eqcom 2083 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | bitri 182 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 = wceq 1284 ∩ cin 2972 ⊆ wss 2973 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 df-ss 2986 |
This theorem is referenced by: dfss2 2988 onelini 4185 cnvcnv 4793 funimass1 4996 dmaddpi 6515 dmmulpi 6516 |
Copyright terms: Public domain | W3C validator |