![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvcnv | GIF version |
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
cnvcnv | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4723 | . . . . 5 ⊢ Rel ◡◡𝐴 | |
2 | df-rel 4370 | . . . . 5 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
3 | 1, 2 | mpbi 143 | . . . 4 ⊢ ◡◡𝐴 ⊆ (V × V) |
4 | relxp 4465 | . . . . 5 ⊢ Rel (V × V) | |
5 | dfrel2 4791 | . . . . 5 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
6 | 4, 5 | mpbi 143 | . . . 4 ⊢ ◡◡(V × V) = (V × V) |
7 | 3, 6 | sseqtr4i 3032 | . . 3 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
8 | dfss 2987 | . . 3 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
9 | 7, 8 | mpbi 143 | . 2 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
10 | cnvin 4751 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
11 | cnvin 4751 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
12 | 11 | cnveqi 4528 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
13 | inss2 3187 | . . . . 5 ⊢ (𝐴 ∩ (V × V)) ⊆ (V × V) | |
14 | df-rel 4370 | . . . . 5 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V)) | |
15 | 13, 14 | mpbir 144 | . . . 4 ⊢ Rel (𝐴 ∩ (V × V)) |
16 | dfrel2 4791 | . . . 4 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
17 | 15, 16 | mpbi 143 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
18 | 12, 17 | eqtr3i 2103 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (𝐴 ∩ (V × V)) |
19 | 9, 10, 18 | 3eqtr2i 2107 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 Vcvv 2601 ∩ cin 2972 ⊆ wss 2973 × cxp 4361 ◡ccnv 4362 Rel wrel 4368 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 |
This theorem is referenced by: cnvcnv2 4794 cnvcnvss 4795 |
Copyright terms: Public domain | W3C validator |