| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funimass1 | GIF version | ||
| Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.) |
| Ref | Expression |
|---|---|
| funimass1 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((◡𝐹 “ 𝐴) ⊆ 𝐵 → 𝐴 ⊆ (𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imass2 4721 | . 2 ⊢ ((◡𝐹 “ 𝐴) ⊆ 𝐵 → (𝐹 “ (◡𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐵)) | |
| 2 | funimacnv 4995 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) | |
| 3 | dfss 2987 | . . . . . 6 ⊢ (𝐴 ⊆ ran 𝐹 ↔ 𝐴 = (𝐴 ∩ ran 𝐹)) | |
| 4 | 3 | biimpi 118 | . . . . 5 ⊢ (𝐴 ⊆ ran 𝐹 → 𝐴 = (𝐴 ∩ ran 𝐹)) |
| 5 | 4 | eqcomd 2086 | . . . 4 ⊢ (𝐴 ⊆ ran 𝐹 → (𝐴 ∩ ran 𝐹) = 𝐴) |
| 6 | 2, 5 | sylan9eq 2133 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → (𝐹 “ (◡𝐹 “ 𝐴)) = 𝐴) |
| 7 | 6 | sseq1d 3026 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐹 “ (◡𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐵) ↔ 𝐴 ⊆ (𝐹 “ 𝐵))) |
| 8 | 1, 7 | syl5ib 152 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((◡𝐹 “ 𝐴) ⊆ 𝐵 → 𝐴 ⊆ (𝐹 “ 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∩ cin 2972 ⊆ wss 2973 ◡ccnv 4362 ran crn 4364 “ cima 4366 Fun wfun 4916 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-fun 4924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |